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ABSTRACT

The limited driving range of BEVs is the main challenge in developing zero-emission 
Battery Electric Vehicles (BEVs) to replace traditional fuel-based vehicles. This 
limitation necessitates an increase in battery energy while balancing the power supply and 
consumption requirements for the vehicle’s motor and auxiliaries, such as the Heating, 
Ventilation, and Air Conditioning (HVAC) system. This research proposes a solution to 
achieve more efficient control of HVAC consumption by integrating fuzzy logic techniques 
with brute-force algorithms to optimize the Energy Management System (EMS) in BEVs. 
The model was based on actual parameters, implemented using MATLAB-Simulink and 
ADVISOR software, and configured using a backward-facing design incorporating the 
technical specifications of a Malaysian electric car, the PROTON IRIZ. An optimal solution 
was proposed based on the Satisfaction Ratio (SR) and State of Charge (SoC) metrics to 
achieve the best system optimization. The results demonstrate that the optimized fuzzy 
EMS improved power consumption by 23.2% to 26.6% compared to a basic fuzzy EMS. 
The proposed solution significantly improves the driving range of BEVs.  

Keywords: Battery electric vehicle, brute-force 
algorithm, energy management system, fuzzy logic, 
satisfaction ratio, state of charge

INTRODUCTION

An Electric Vehicle (EV) is a car that uses 
a minimum of one electric-powered motor 
rather than the traditional combustion 
engine. It is a second-hand innovation since 
this idea has existed since the mid-1800s. 
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Although the enthusiasm for this technology was strong during the 20th century, the demand 
for longer-range vehicles, the lower cost of gas, the invention of the power starter in standard 
cars, and the beginning of the mass development of internal burning EVs have reduced the 
attention on EVs until the start of the 21st century (Termiz, 2015). 

The environmental issues caused by traditional transportation and increasing oil 
prices have revived the passion for power vehicles in recent years (Eberle & von Helmolt, 
2010; Termiz, 2015). Due to pollution caused by conventional vehicles, fume emissions 
and the scarcity of fossil fuels, there has been much interest in the work on sustainable 
transportation, such as Hybrid Electric Vehicles (HEVs) (Han et al., 2018; Zhang et al., 
2017) and Plug-in Hybrid Electric Vehicles (PHEVs) (Hassanzadeh & Rahmani, 2022) 
that can reduce the carbon impacts but are unable to remove them completely. A BEV is 
powered entirely on electric electricity, normally a huge electric motor and a huge battery 
pack, consisting of a DC-DC converter and transmission, driving cycle, and longitudinal 
vehicle dynamic model. Pure electric motor vehicle is a type of EV that makes use of 
chemical power saved in rechargeable battery packs. BEVs use electric motors and motor 
operators instead of internal combustion engines (ICEs) for power.

BEVs present an eco-friendly solution with exceptional drivetrain performance and 
energy efficiency, and the trade-off is the restricted driving range attributed to limitations in 
battery capacity and volume. The situation becomes more intricate with the rise in power 
requirements and the inclusion of multiple electrical loads due to the electrification of 
transportation. For BEVs that rely solely on batteries as their energy storage and need to 
cater to numerous loads, the challenge lies in alleviating range anxiety by devising stringent 
control rules and a management strategy that can effectively extend the driving range (Dou 
et al., 2021; Hu et al., 2020; Mohd, 2020). 

An Energy Management System (EMS) is a computer-supported device utilized by 
drivers of electrical frameworks to manage and optimize the efficiency of transmission 
systems. The EMS needs to be maximized to enhance its performance and battery efficiency, 
as well as to increase the travel distance for Battery Electric Vehicles (BEVs) and maintain 
driver confidence. To improve the performance of the EMS, artificial intelligence (AI) 
techniques have been rapidly evolving, particularly in the field of EMS (Hussain et al., 2019; 
Górriz et al., 2020; Pan et al., 2021; Mohd, 2020). Their revolutionary applications provide 
efficient control strategies that increase the capabilities, efficiency, and accuracy of EMS, 
as well as reduce EVs’ energy consumption. Hence comes the need for AI approaches in 
energy management to provide a battery power supply that fulfills power consumption for 
motors and auxiliaries such as heating, ventilation, and air conditioning systems (HVAC). 
Applying EMS is one of the AI approaches that can reallocate the electrical power flow 
inside the HVAC system to boost power efficiency and obtain optimum effectiveness. 
Therefore, this research is focused on the energy consumption of BEVs by developing 
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optimization algorithms based on fuzzy logic techniques to apply the best solution in EMS. 
Such innovative AI solutions can enhance the efficiency of smart EMS in BEVs as the 
future sustainable transportation.

The main aim of this study was to develop an optimal fuzzy logic control system 
algorithm for the energy management of an autonomous EV system. Thus, the proposed 
system employed an algorithm based on the optimal-fuzzy method. The structure and 
parameters of optimal-fuzzy were tuned using a brute-force heuristic algorithm as 
the optimization method. The brute force algorithm has been successfully used as an 
optimization technique in other applications, and it is the best learning method based on a 
set of small number of inputs and outputs (Pham & Månsson, 2018). However, no previous 
studies have used brute force with fuzzy logic techniques to find the best solution or set a 
strategy EMS for BEVs. Therefore, the brute-force algorithm has been chosen to integrate 
with the fuzzy controller because the algorithm is the best optimization for the system 
when involving a small number of inputs-outputs, and also, the system is not working 
continuously. This technique finds the best solution from a wide range of measures, where 
the decision is based on two or more variables. Hence, the optimized controller would be 
able to provide an appropriate energy supply to each auxiliary EV component, along with 
a significant improvement in its travel range. 

METHODS

This simulation-based study was conducted to develop improvements for the existing 
system using experimental simulation. Several computerized tools were used to simulate 
the desired system. Among the numerous vehicle modeling and analysis platforms, 
MATLAB/Simulink, integrating the ADVISOR library, is the most widely used platform in 
academic studies of mechanical engineering simulations (Tammi et al., 2018). Therefore, 
in this study, the simulations were based on the ADVISOR library integrated within the 
MATLAB/Simulink system.

The main aim of this study was to develop an optimal fuzzy logic control system for the 
energy management of an autonomous EV system. Thus, the proposed system employed 
an algorithm based on the optimal-fuzzy method. The structure and parameters of optimal-
fuzzy were tuned using a brute-force heuristic algorithm as the optimization method. 
Hence, the optimized controller would be able to provide an appropriate energy supply to 
each auxiliary EV component, along with a significant improvement in its travel range. 

Design of Battery Electric Vehicle Basic System  

The simulation model comprises five key components that work together to provide a 
comprehensive view of the electric vehicle’s performance, as shown in Figure 1. These 
components are:
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1. The driving cycle represents the pattern of acceleration and deceleration of the 
vehicle over time. It is an important input for the simulation as it determines the 
power required from the electric motor and the energy required from the battery.

2. The electric motor model models the behavior of the electric motor in response to 
the power demand from the driving cycle. It takes into account the motor efficiency, 
torque-speed characteristics, and other parameters.

3. The transmission model models the behavior of the transmission system that 
delivers the power from the electric motor to the wheels. It takes into account the 
gear ratios and the efficiency of the transmission system.

4. The battery charge controller model with the DC-DC converter models the behavior 
of the battery charge controller and the DC-DC converter that regulates the voltage 
and current flow between the battery and the electric motor.

5. The longitudinal vehicle dynamics model models the behavior of the vehicle 
in terms of its acceleration, speed, and distance traveled, taking into account 
the driving cycle, electric motor model, transmission model, and battery charge 
controller model.

The simulation employs a backward-facing model, which forecasts the vehicle’s 
behavior by considering the input driving cycle and the behavior of its components. The 
model operates without the need for a driver, requiring the user to only input the driving 
pattern or velocity profile.

It is essential to have comprehensive knowledge of all relevant technical specifications 
to ensure the accurate utilization and optimization of the batteries. Therefore, in selecting 

Figure 1. Block diagram of BEV system components based on a backward-facing model
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the most suitable battery for the modeled 
EV, the technical specifications of the LG-
PROTON IRIZ BEV were utilized (Table 1). 

Auxiliary Electric Load Model 

Valentina et al. (2014) stated that the major 
challenges with EVs are the driving range 
and battery lifetime. The performance and 
efficiency of EVs need to be optimized, and 
consumption needs to be reduced to mitigate 
these problems. In order to achieve these 
objectives and to insert the configurable 
subsystems of this study, the Auxiliary 
Electric Load Model was added to the basic 
BEV model. The following Equation 1 
provides an example of the typical auxiliary 
load:

AUX = HVAC + HS + SS + CS + SN 
(1)

Table 1
Technical specification for LG-PROTON IRIZ BEV 

Drivetrain Parameters
Drive System Front-wheel drive
Curb Weight 918 kg
Adds wright (Cargo) 56 kg
Gross Weight 1516 kg

Wheel/Axe Front Wheel Drive 
195/55R15 (Standard)

Accessories Variable ACC_Small_Car
Powertrain EV – Manual – PTC_EV
Rated Voltage 330 V
Rated Capacity 39.6 kWh, 120 Ah
Rated Lifetime 10 years \ 160,000 km
Motor Type PMAC (YASA-400)
Max Output 116 kW
Max Torque 360 Nm
Transmission Single Speed 3.37:1
Normal Voltage 330 V
Total Cells 360 Cells
Total Weight 540 kg

where AUX = auxiliary load; HVAC = heat, ventilation, and air conditioning; HS = heated 
seats; SS = sound system; CS = camera system; and SN = satellite navigation.

This study considered the Heating, Ventilation, and Air Conditioning (HVAC) system 
and Heated Seat (HS) because EVs have the largest auxiliary power loads. As part of the 
auxiliary components of cars nowadays, the HVAC and HS units may significantly deplete 
the energy from the battery, depending on the vehicle’s settings. If heated seats are used, 
as required in some European countries, energy depletion would increase even more.

The auxiliary loads in EVs, such as heating, air conditioner, sound system, and 
satellite navigation, use electrical energy from batteries, reducing the vehicle’s driving 
range. Some of these loads are considered very important. Controlling the auxiliary loads 
can improve the total fuel consumption without decreasing the energy consumption of 
the auxiliary system.

Design of BEV with Optimal Fuzzy Logic Energy Management System

In this study, a designed fuzzy logic strategy was integrated into the EMS to improve 
battery power capacity utilization. The EMS system is characterized by a simple black 
box design and features SoC and Speed inputs. Additionally, it had three outputs, namely 
Heated Seats (HS), Front HVAC, and Rear HVAC, as illustrated in Figure 2.
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In order to achieve optimal load consumption for the desired HVAC components, the 
controller was driven by the following two inputs:

• The SoC represents the remaining capacity of the power storage system, scaled 
as a percentage fraction ranging from 0 to 100. This input is important because it 
helps the controller determine how much energy is available for use by the HVAC 
components. By monitoring the SoC, the controller can adjust the load consumption 
of the HVAC components to ensure that they are not consuming more energy than 
is available in the power storage system.

• The speed of the vehicle is also an important input for the controller because it 
helps to determine the energy requirements of the HVAC components. As the 
speed of the vehicle increases, the energy requirements of the HVAC components 
also increase. Therefore, by monitoring the speed of the vehicle, the controller can 
adjust the load consumption of the HVAC components to ensure that they are not 
consuming more energy than is required for the given speed.

By combining the SoC and Speed inputs, the controller can adjust the HVAC load 
consumption in real-time to ensure maximum efficiency while maintaining the occupants’ 
comfort. This approach helps to reduce energy consumption and extend the range of electric 
vehicles, leading to lower operating costs and a more sustainable mode of transportation. 
Based on the desired HVAC components provided, the output required would be three 
separate values, each representing the power consumption of the individual components. 
The three components are:

• Front HVAC: The main HVAC system facilitates the driver and is measured in 
watts. The power consumption of this component is assumed to be a fixed load 
of 1,000 watts.

• Rear HVAC: It is also the main HVAC system that facilitates the passengers instead 
of the driver. Similar to the front HVAC, the power consumption of this component 
is assumed to be a fixed load of 1,000 watts.

• Heated Seat (HS): This component represents the auxiliary seat heating in modern 

Figure 2. EMS with the fuzzy logic controller
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vehicles and is used to facilitate the driver. The power consumption of this 
component is also assumed to be a fixed load of 1,000 watts.

Therefore, to provide the required output, the power consumption of each of these 
components needs to be calculated and expressed in watts. It is important to note that these 
power consumption values are based on assumptions, and actual power consumption may 
vary based on factors such as vehicle make and model, environmental conditions, and usage 
patterns. Each input and output variable has three linguistic levels, low, medium, and high, 
represented as membership functions. This study used a triangular shape encoded by three 
points (Le, He, and Re). The fuzzy logic rules were designed to depend on these values. 
The values calculated using the fuzzy logic for the standards of the inputs and outputs are 
listed in Table 2.

The rules were set based on real situations by considering different levels of real speed 
inside cities, highways, and mixed situations. The rules have also considered real SoCs 
at different levels. Moreover, the rules also considered the largest auxiliary power load in 
electric vehicles (EVs): the HVAC system and HS. The following rules of the fuzzy logic 
strategy, as produced by the software, were implemented:

1. If {(SoC is high)} and (Speed is low)} then {(HS is high) and (Front HVAC is 
high) and (Rear HVAC is high)} 

2. If {(SoC is high)} and (Speed is medium) then {(HS is high) and (Front HVAC is 
high) and (Rear HVAC is high)}

3. If {(SoC is high)} and (Speed is high) then {(HS is medium) and (Front HVAC is 
medium) and (Rear HVAC is medium)} 

4. If {(SoC is medium)} and (Speed is low) then {(HS is medium) and (Front HVAC 
is medium) and (Rear HVAC is medium)} 

5. If {(SoC is medium)} and (Speed is medium) then {(HS is medium) and 
(Fr0ntHVAC is medium) and (Rear HVAC is medium)} 

Table 2
Inputs and outputs for the membership functions

Input Output
SoC Status Speed Status HS Front HVAC Rear HVAC

High Low High High High
High Medium High High High
High High Medium Medium Medium
Medium Low Medium Medium Medium
Medium Medium Medium Medium Medium
Medium High Low Low Low
Low Low Low Low Low
Low Medium Low Low Low
Low High Low Low Low
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6. If {(SoC is medium)} and (Speed is high) then {(HS is low) and (Front HVAC is 
low) and (Rear HVAC is low) 

7. If {(SoC is low)} and (Speed is low) then {(HS is low) and (Front HVAC is low) 
and (Rear HVAC is low)}

8. If {(SoC is low)} and (Speed is medium) then {(HS is low) and (Front HVAC is 
low) and (Rear HVAC is low)}

9. If {(SoC is low)} and (Speed is high) then {(HS is low) and (Front HVAC is low) 
and (Rear HVAC is low)}

The goal of conducting optimization was to reduce energy consumption and extend 
the SoC range. Figure 3 shows the block functional design of the proposed system. This 
solution was based on the brute force function, which used the optimization algorithm 
to find the best solution from a wide range of measures. In this case, the decision can be 
made based on two or more conflicting measures, the SoC and the Satisfaction Ratio (SR). 

The fuzzy system was built to preserve the energy level for longer. This aim was 
achieved by limiting the consumption of energy based on the current level of SoC and 
speed, which is supposed to consume more energy in an EV. However, there is an implicit 
relationship between the fuzzy system and the SR. More specifically, the positioning of 
the edges of the membership function in the fuzzy was vital in changing both SR and SoC. 
Therefore, the fuzzy logic was added with an optimization algorithm that simultaneously 
optimizes both measures. The optimization of two variables can be done by finding the 
Pareto front. 

Figure 4 shows the flowchart of the fuzzy controller during the brute force mode. 
The idea was that the system would try different configurations of membership functions. 
The SR was memorized for every configuration, and the system continued to change the 
configuration with every new SoC cycle until it ended with all possible configurations. 
The system used the brute force algorithm from the memorized SR scores to find the 
optimal value sent to the controller to recalibrate the membership function. The brute-force 
algorithm was working offline to choose the best solutions for the membership function 
based on historically memorized scores of SoC and SR. Thus, this step needed to be done 
just once at the beginning.

Brute force is a searching algorithm for all possible solutions in the solution space. 
The brute force approach is to divide the solution space into small partitions. The solution 
space was defined by nine variables (Equation 2) because the study involves three variables, 
each with three membership functions. For every variable, one point needed to be changed. 
Table 3 shows the logic of the solution, in which every alternative solution is a function 
of these variables.

Any solution X = [x1 x2 x3 x4 x5 x6 x7 x8 x9] ∈ [0 1]9                             (2)
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Table 3
Logic for the solutions in the brute force algorithm

Solution Dimension Meaning

X 1 × 9 The solution defined the points as 1, 2, and 3 for every variable (two 
inputs and one output), which meant there were nine points in total

The process of the brute force logic solution is described as follows:
• The brute force is supposed to generate all possible X values and call the solution 

decoder. 
• The search gave every value of xi one of four possible values (0, 0.3, 0.6, or 

0.9), which meant the size of the solution space was 262,144 (four values × nine 
membership functions). 

• The set of all possible cases was labeled as X. Each solution consisted of two 
objective values: the first one was the time when SoC was zero, and the second one 
was SR. However, these two solutions were the opposite because the maximization 
of one will minimize the other when the objective was to maximize both, as shown 
in the example solution in Figure 5. 

• The results became the final set of non-dominated solutions, known as the Pareto 
front. 

Figure 4. Optimal fuzzy logic flowchart
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Figure 5. A subset of the solutions to show the conflicting nature between SR and SoC (one sample solution 
out of 262,144 solutions)

Figure 5 shows one sample solution among the 262,144 solutions obtained. Higher 
satisfaction was shown to be equivalent to lower SoC and vice versa. The nature of the 
problem was to achieve multi-objective optimization, with conflict between the two 
objectives. The optimization solution that met certain required modes was extracted from 
the brute force results: maximum SoC was more economical, while maximum SR was more 
comfortable. The relationship between the SoC and the SR was conflicting. Consequently, 
the solutions were also conflicted because maximizing one, minimizes the other. 

Evaluation Performances of Energy Management System 

This research aims to provide a solution to improve the driving range of EVs by keeping an 
acceptable level of comfort for the driving experience. The SoC refers to the energy stored 
in a battery or other power source at a given time. The efficiency of the SoC of the battery 
can be determined using the calculated current. The model used Coulombic Efficiency 
(CE) and optimal capability values, which are functions of temperature, to calculate the 
recurring battery ability in systems of ampere-hours (Ah). SoC estimation can be made 
using the following Equation 3:

SoC = �Ah𝑚𝑚𝑚𝑚  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −Ah 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
Ah𝑚𝑚𝑚𝑚  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
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where SoC is the State of Charge, Ahmx capacity is the maximum power of the battery in 
ampere-hours, and Ahused capacity is the used power in ampere-hours.

The drain of the State of Charge (dSoC) refers to the rate at which energy is depleted 
from the battery or power source. A higher drain rate in electric vehicles or other battery-
powered systems can lead to reduced efficiency and shorter driving ranges, as the battery 
would need to be recharged more frequently. Therefore, a threshold value of 0.005 (0.5%) 
suggests that the researchers were concerned about the efficiency of the system and were 
likely investigating the power consumption and efficiency of an electric vehicle or a similar 
system. The fact that the study was interested in understanding the impact of different 
driving conditions further supports the idea that the researchers were investigating the 
power consumption and efficiency of an electric vehicle. Different driving conditions, such 
as varying speeds and terrains, can have a significant impact on the power consumption 
and efficiency of an electric vehicle, so studying these factors can help to optimize the 
design and performance of such systems.

The driving cycle(speed) is a collection of information embodying the speed of a 
vehicle versus time. Different nations and companies have created driving cycles to assess 
the functionality of cars in several ways, for instance, gas usage and pollution discharges for 
all auto types inside or even outside urban areas (highways). A driving cycle holds regular 
records offered in ADVISOR and is managed as a 2-D research table listed through Speed 
and Time. The driving cycles are used to test the gas economic condition and efficiency of 
vehicles. Moreover, the speed range of driving cycles amounted to scores from 0 to max 
speed in km/h based on the type of driving cycles (Giakoumis, 2017). 

In this research, the thresholds for SR were set at 50%, depending on the weather in 
Malaysia. For example, when the weather is very hot, the driver would not use all electrical 
accessories, such as the heated seats. Moreover, if the driver is in a country with cold 
weather, the driver would not use the air conditioner. Thus, the SR is a flexible value that 
can be increased or decreased depending on the situation. The SR is presented in Equation 4: 

SR = 1 − |𝑐𝑐𝑐𝑐𝑢𝑢−𝑐𝑐𝑐𝑐|������������

𝑐𝑐𝑐𝑐𝑢𝑢
         (4)

where y𝑐𝑐𝑢𝑢   denotes the desired load from the user, y𝑐𝑐   denotes the actual load from the 
controller, and  |𝑐𝑐𝑐𝑐𝑢𝑢 − 𝑐𝑐𝑐𝑐|������������  denotes the absolute value of the mean of the difference between 
the desired and the actual energy. 

Wise Performance Measurement (WPM)

The study also introduces a new metric called the Wise Performance Measure (WPM) 
to balance the energy requirements of SoC and auxiliaries. It is accomplished by setting 
threshold levels for SoC drop and SR and then tracking any breaches of these thresholds 
at regular intervals.
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The new measure aims to evaluate two aspects of EV driving. The first aspect was 
to save the energy of the battery while driving, and the second was to satisfy the driver’s 
desire for energy for the usage of accessories. Thus, the new measure was developed as 
a combination of both SoC and SR while driving. The standard of WPM was developed 
based on the SoC and SR; thus, the lower the value of WPM, the better. The new measure 
can be calculated as follows, and as shown in Figure 6:

1. The whole-time interval of the drive is divided into sub-intervals, ∆𝑇𝑇 , where each 
sub-interval expresses a part of the time that requires a lower level of SoC saving 
and SR

2. An accumulator of A = 0 was initiated, with A denoting the WPM
3. Each ∆𝑇𝑇  would find a two-time series of dSoC

dt
 , and the second was SR

• Compared dSoC
dt

  with a threshold, TSoC, where the value of dSoC
dt

  has to be higher than TSoC

- dSoC
dt

  > TSoC, if the condition is not applied, then A = A + 1; otherwise, A is kept 
without a change

• Compared SR with a threshold, TSR, where the value of SR has to be higher than TSR

- SR > TSR, if the condition is not applied, then A = A + 1; otherwise, A is kept 
without a change

4. At the end of the experiment, the value of A would indicate how many times the 
condition was not applied. Thus, the goal would be to minimize A. The improved 
performance would be equivalent to a lower value of A. 

Figure 6. WPM calculator flowchart
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As shown in Equation 4, this study selected TSR = 0.5, which means that the SR has 
to be at least 50%. Two experiments were conducted to calculate TSoC: (1) without a load 
and (2) with a full load. The entire SoC was recorded for both experiments. Subsequently, 
this study identified the threshold as a new time series that indicates a 50% slope between 
SoC1 and SoC2. Based on this observation, the drain of the SoC must remain below the 
threshold value of 0.005 (0.5%) at any time interval. In this research, the threshold for 
draining the SoC (dSoC) was set at 0.5%, depending on the changes in driving cycle time. 
All parameters were measured at different stages. The SoC and speed (driving cycle) were 
measured during the developmental stage of the Fuzzy Logic Controller (FLC), as they 
were inputs for the FLC. The SR and WPM were measured during the developmental 
stage of the Brute Force (BF) method. The SR was one of the inputs for BF and one of 
the outputs for WPM.

RESULTS AND DISCUSSION

The optimal fuzzy controller of this study is an adaptive version of the traditional fuzzy 
logic by integrating another technique to reconfigure the fuzzy membership function based 
on calculating the different SRs and SoC in different conditions and then deciding the best 
configuration. The simulation is based on three driving cycles: The New European Driving 
Cycle (NEDC), the Urban Dynamometer Driving Schedule (UDDS) and the Japanese 10-
15 Mode Driving Cycle (Japan 10-15). 

Based on the results presented in Figure 7, it can be concluded that the model using 
a fuzzy logic controller and optimization by brute-force algorithm for the NEDC with a 
maximum accumulative load of 3000W for the HVAC system has a better range than the 
other models. The achieved SoC of 25605 seconds corresponds to a full trip distance of 
238.9 km, which is better than the range achieved by the basic model with a load for the 
NEDC, which is about 193.9 km, and the basic fuzzy logic model, which is about 216.6 
km as shown in Table 4. 

Moreover, the 100% range for NEDC is also 238.9 km, while the 80% range is 191.1 
km. It indicates that the proposed model can achieve a longer range, which can benefit 
electric vehicles in terms of usability and practicality. In summary, the model with a fuzzy 
logic controller and optimization by brute-force algorithm for the NEDC with a maximum 
accumulative load of 3000W for the HVAC system has shown to be more effective in terms 
of range performance and can be a useful tool for improving the overall performance of 
electric vehicles.

In Figure 8, the actual SR achieved by the model using FLC and optimization by brute 
force is higher than the assumed limit, indicating that the driver is more satisfied with the 
driving range provided by the model. The dSoC is relatively low, indicating that the battery 
performs efficiently during the driving cycle. Overall, these results suggest that the model 
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using FLC and optimization by brute-force algorithm effectively improves both battery 
range and driver satisfaction. 

Based on the results presented in Figures 9 and 10, it can be concluded that the BEV 
model using FLC and optimization by brute-force algorithm for the UDDS with a load 
has a better range compared to the basic model with load and the basic fuzzy model with 
load. The achieved SoC of 26058 seconds corresponds to 247.5 km for the full trip, which 
is better than the range achieved by the basic model with a load of about 200 km and the 
basic fuzzy model with a load of about 223 km, as shown in Table 4. Additionally, dSoC 
is relatively low and maintained in the threshold range. It indicates that the battery is 
performing efficiently and is able to maintain a stable state of charge throughout the cycle.

It is important to note that the distance traveled may vary depending on various factors, 
such as driving conditions, terrain, and temperature. The study also shows that the 100% 
range for the UDDS is 247.5 km, and the 80% range for UDDS is 198 km. The results 

Figure 7. SoC for BEV using NDEC

Figure 8. SR and dSoC for BEV using NDEC 
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show that the FLC and optimization by brute-force algorithm could potentially improve 
the range of the BEV model, which could be valuable information for developing more 
efficient and effective electric vehicles.

Figures 11 and 12 show the results of the BEV model using FLC and optimization by 
brute-force algorithm for the Japan 10-15 driving cycle mode with a load of about 3000 W 
for the HVAC system. The study reports that the SoC lasted for 32574 seconds, equivalent 
to 205.3 km for the full trip. A low and stable dSoC during a driving cycle is a positive 
sign for battery performance. It is important for the reliability and longevity of the battery, 
as well as for the performance of the vehicle that relies on it for power. A low and stable 
dSoC is a good indicator of efficient battery performance.

Figure 9. SoC for BEV using UDDS

Figure 10. SR and dSoC for BEV using UDDS
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Based on the results presented in Table 4, it can be concluded that the model using FLC 
and optimization by brute-force algorithm for Japan 10-15 with load has a better range 
compared to the basic model with load for the Japan 10-15 mode and the basic fuzzy model 
with load for the Japan 10-15 mode. The 100% range for Japan 10-15 mode is reported 
to be 205.3 km, while the 80% range is 164.3 km. These findings suggest that the optimal 
model can achieve a longer range of about 205.3 km, which is better than the range achieved 
by the basic model with load for the Japan 10-15 mode, which is about 162.2 km, and the 
basic fuzzy model with load, which is about 183.3 km. It indicates that the proposed model 
can improve the range performance of electric vehicles in Japan’s 10-15 mode, which can 
benefit drivers in Japan. Therefore, using FLC and optimization by brute-force algorithm 

Figure 12. SR and dSoC for BEV using Japan 10-15

Figure 11. SoC for BEV using Japan 10-15
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can be considered a useful approach to improve the range performance of electric vehicles 
in Japan’s 10-15 mode with load.

Overall, the study shows that using a fuzzy logic controller and optimization by brute 
force can significantly improve the range of battery-powered electric vehicles, as shown in 
Table 4. The results also suggest that the performance of the EMS can vary depending on 
the driving cycle used for testing. Implementing the fuzzy logic strategy and optimization 
demonstrates a clear improvement in power consumption for the HVAC system while 
preserving power capacity for motor torque and speed. The results show that the basic 
fuzzy EMS can improve power consumption by 11.7% to 12.4%, and the optimized fuzzy 
EMS can improve it by 23.2% to 26.6%. The optimal strategy for improving the range of 
the BEV with an auxiliary load system was the fuzzy logic controller and optimization by 
brute force, with the highest improvement observed in the NEDC mode. Additionally, the 
optimal strategy performed better than the basic BEV model with an auxiliary load system in 
all four driving cycles. These findings can be useful for designing and optimizing EMS for 
battery electric vehicles, ultimately leading to more efficient and practical electric vehicles.

Table 4
Summary of results for the three EMS model  

EMS Performance
Driving Cycle

NEDC UDDS Japan 10-15

Basic BEV with HVAC 
Load

SoC(second) 20774 21060 25726
Full Trip Distance (km) 193.9 200.0 162.2
Full Consumption Rate (%) 34.8 36.3 44.2

BEV FL Model with 
HVAC load

SoC(second) 23214 23515 28925
Full Trip Distance (km) 216.6 223.0 182.3
SR (%) 90 90 90
Fuzzy Enhancement Rate (%) 11.7 11.7 12.4

BEV FL Model + 
Optimization (brute-
force algorithm) with 
HVAC load

SoC(second) 25605 26058 32574
Full Trip Distance (km) 238.9 247.5 205.3
SR (%) 65 65 65
Optimization Enhancement Rate (%) 23.2 23.7 26.6

COMPARISON OF RESULTS WITH PUBLISHED WORKS

Upon comparing the results of this study with previous studies, it is evident that this study 
has obtained significant improvements, especially in terms of driving range. Table 5 shows 
a comparison with the previous work.

The proposed solution can provide better results than most of the previous studies that 
focused on the EMS system because no previous studies have used the Fuzzy technique with 
BF in the BEV field and placed emphasis on achieving a balance between two conflicting 
objectives: reducing power consumption by the HVAC and satisfying the driver. The 
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challenge lies in reducing the power supplied to the HVAC system while maintaining driver 
satisfaction at an appropriate level. While most previous studies concentrated on enhancing 
power consumption or recharge efficiency, they did not address driver satisfaction.

This study introduces a novel measure called WPM, which establishes a relationship 
between the SR and the rate of dSoC. The optimal trade-off between these two conflicting 
measures can be attained using brute force techniques, which have not been utilized in 
prior studies. The results from the four proposed systems, tested on different driving cycles, 
clearly demonstrate that implementing fuzzy logic with the BF strategy can enhance the 
power efficiency of the HVAC system while preserving power capacity for motor torque 
and speed. However, previous studies did not incorporate the brute force technique with 
a Fuzzy Logic Controller to identify the best solution or establish a strategy for resetting 
BF at any point for BEVs. Furthermore, these studies did not propose a measurement 
technique similar to WPM.

CONCLUSION

This study aims to propose an optimization algorithm that integrates the brute-force 
technique and the fuzzy logic controller. A basic fuzzy logic controller is designed and 

Table 5
Comparison between the performance of the proposed solutions and the previous work

Source Solution/Design Driving cycle Results

(Pan et al., 2021)

Fuzzy optimal EMS concerning 
the equivalent speed (FLC strategy 
combined with a GA optimal 
algorithm)

Custom with 
Slope

- 8.66% improvement in 
the driving range

(Hu et al., 2019)

generalized regression
neural network (GRNN) and 
Dynamic programming – based 
energy management strategy 
(DPEMS) under typical driving

Custom
- 5.65 to 11.04% 

improvement in range 
and power-saving

(Masjosthusmann 
et al., 2012)

Four modular EMS (storage, 
drivetrain, load, consumption 
estimation)

Custom - 15% improvement in 
range and power saving

Auxiliary power strategy by using a Fuzzy Logic 
Controller that is based on SoC and speed
(Proposed)

NDEC
UDDC
Japan 10-15

- 11.7%
- 11.7%
- 12.4%

Improvement in range and 
power-saving

Optimal auxiliary power strategy by using Hybrid 
Design of Fuzzy Logic Controller that is based on SoC 
and Speed and Brute force algorithm for Optimal FLC 
(Proposed)

NDEC
UDDC
Japan 10-15

- 23.2%
- 23.7%
- 26.6%

Improvement in range and 
power-saving
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integrated into the EMS to achieve this goal; an additional optimization technique is 
integrated to seek the optimal configuration of the fuzzy logic controller using a brute 
force algorithm. The fuzzy controller of this study is designed to control the auxiliary load 
consuming power based on the SoC and speed. The solution is based on the brute force 
function, the proposed optimization technique to find the best solution from a wide range 
of measures in which the decision is based on two or more conflicted measures. Brute force 
is a searching algorithm for all possible solutions in the solution space. 

Overall, the study provides valuable insights into the design and optimization of 
EMS for battery electric vehicles, specifically improving their range. Using fuzzy logic 
controllers and optimization by brute force is an effective approach for achieving this goal, 
with significant improvements observed in all driving cycles tested. The study highlights 
the importance of considering different driving cycles for testing and evaluation, as well 
as the potential benefits of incorporating auxiliary load systems and optimizing the power 
consumption of the HVAC system. These findings can inform the development and 
optimization of EMS for battery electric vehicles, ultimately leading to more efficient and 
practical electric vehicles.
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